科 系:|人工智能系|
学历职称:副研究员 (Associate Professor)
导 师:博士/硕士研究生导师
研究方向:人工智能,深度学习,图片处理,医学信息学
联系方式:uzair@hainanu.edu.cn
基本情况:巴基斯坦;博士,博士后;
通讯地址:海南大学韦德体育bevictor214办公室
电话: 13215834970 (微信)
学习和工作经历:
2021年11月至今 海南大学韦德体育bevictor 副研究员 (海南省E类高层次人才)
2019年11月-2021年10月 南京师范大学地科院 博士后
2019年01月-2019年06月 海南大学旅游学院 讲师
博士招生专业:信息与通信工程
硕士招生专业:电子信息专业
主持或参与科研项目:
[1] 2025年-2028年, 主持 地区科学基金项目 “基于空-谱联合特征的红树林亚种高光谱图像分类方法”
[2] 2024年-2024年, 主持 国家自然科学基金外国学者青年项目 “基于光谱特征融合的高光谱图像分类方法”
[3] 2022年-2026年, 主持 海南大学科研启动基金项目“基于GCN和注意力机制的深度学习方法在医学诊断与分析领域的应用与研究”
[4] 2024年-2027年, 参与 海南省重点研发项目 “医康养服务系统可持续运行与智能干预技术研究及应用”
[5] 2023年-2026年, 参与 海南省自然科学基金青年基金项目“模型驱动的数字孪生服务组合优选方法”
[6] 2023年-2026年, 参与 海南省自然科学基金面上项目“数字超表面辅助毫米波车联网通信传输技术研究”
(可包含论文、专利、著作等):
学术成果
[1] Peng, M., Liu, Y., Qadri, I. A., Bhatti, U. A.*, Ahmed, B., Sarhan, N. M., & Awwad, E. M. (2024). Advanced image segmentation for precision agriculture using CNN-GAT fusion and fuzzy C-means clustering. Computers and Electronics in Agriculture, 226, 109431. (一区,IF 7.7, JCR Q1)
[2] Han, H., Zeeshan, Z., Talpur, B. A., Sadiq, T., Bhatti, U. A*., Awwad, E. M., ... & Ghadi, Y. Y. (2024). Studying long term relationship between carbon Emissions, Soil, and climate Change: Insights from a global Earth modeling Framework. International Journal of Applied Earth Observation and Geoinformation, 130, 103902. (一区,IF 7.6, JCR Q1)
[3] Bhatti, U. A, Tang, H, Khan, A, Ghadi, Y. Y, Bhatti, M. A, & Khan, K. A. (2024). Investigating the nexus between energy, socio-economic factors and environmental pollution: A geo-spatial multi regression approach. Gondwana Research, 130, 308-325. (一区,IF 6.1, JCR Q1)
[4] Bhatti, U. A, Bhatti, M. A, Tang, H, Syam, M. S, Awwad, E. M, Sharaf, M, & Ghadi, Y. Y. (2024). Global production patterns: Understanding the relationship between greenhouse gas emissions, agriculture greening and climate variability. Environmental Research, 245, 118049. (二区,IF 8.2, JCR Q1)
[5] Zhang, Y, Chen, J, Ma, X, Wang, G, Bhatti, U. A.*, & Huang, M. (2024). Interactive medical image annotation using improved Attention U-net with compound geodesic distance. Expert Systems with Applications, 237, 121282. (一区,IF 8.5, JCR Q1)
[6] Noor, R, Wahid, A, Bazai, S. U, Khan, A, Fang, M, Syam, Bhatti, U. A.*. & Ghadi, Y. Y. (2024). DLGAN: Undersampled MRI reconstruction using Deep Learning based Generative Adversarial Network. Biomedical Signal Processing and Control, 93, 106218. (二区,IF 5.1, JCR Q1)
[7] Huang, M, Zhang, X. S, Bhatti, U. A, Wu, Y, Zhang, Y, & Ghadi, Y. Y. (2024). An interpretable approach using hybrid graph networks and explainable AI for intelligent diagnosis recommendations in chronic disease care. Biomedical Signal Processing and Control, 91, 105913. (二区,IF 5.1, JCR Q1)
[8] Bhatti, U. A, Marjan, S, Wahid, A, Syam, M. S, Huang, M, Tang, H, & Hasnain, A. (2023). The effects of socioeconomic factors on particulate matter concentration in China's: New evidence from spatial econometric model. Journal of Cleaner Production, 417, 137969. IF 11.1(一区,IF 11.1, JCR Q1)
[9] Bhatti, U. A, Tang, H, Wu, G, Marjan, S, & Hussain, A. (2023). MFFCG – Multi feature fusion for hyperspectral image classification using graph attention network, Expert System with Applications. IF 8.1(一区,IF 8.5, JCR Q1)
[10] Bhatti, U. A, Tang, H, Wu, G, Marjan, S, & Hussain, A. (2023). Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence. International Journal of Intelligent Systems, 2023. (二区,IF 7.1, JCR Q1)
[11] Tang, H, Bhatti, U. A, Li, J, Marjan, S, Baryalai, M, Assam, M, ... & Mohamed, H. G. (2023). A new hybrid-forecasting model based on dual series decomposition with long-term short-term memory. International Journal of Intelligent Systems, 2023. (二区,IF 7.1, JCR Q1)
[12] Wang, S, Khan, A, Lin, Y, Jiang, Z, Tang, H, Alomar, S. Y, ... & Bhatti, U. A. (2023). Deep reinforcement learning enables adaptive-image augmentation for automated optical inspection of plant rust. Frontiers in Plant Science, 14, 1142957. (二区,IF 5.6, JCR Q1)
[13] Bhatti, U. A, Nizamani, M. M, & Mengxing, H. (2022). Climate change threatens Pakistan’s snow leopards. Science, 377(6606), 585-586. IF 63.4(一区,IF 63.6, JCR Q1)
[14] Bhatti, U. A, Zeeshan, Z, Nizamani, M. M, Bazai, S, Yu, Z, & Yuan, L. (2022). Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19. Chemosphere, 288, 132569. (二区,IF 8.1, JCR Q1)
[15] Bhatti, U. A, Yu, Z, Li, J, Nawaz, S. A, Mehmood, A, Zhang, K, & Yuan, L. (2021). Local Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification with Deep CNN and Gabor Filtering. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, (一区,IF 8.9, JCR Q1)
专利:
l 尤佳(Uzair),基于GAT和 3D-CNN 的多特征融合高光谱图像分类方法
l 尤佳(Uzair), 种臭氧浓度预测方法、装置、设备及可读存储介质
l 尤佳(Uzair), 一种脑肿瘤 MRI图像分割方法、系统、电子设备及存储介质
l 尤佳(Uzair), 一种基于 EEMD-CEEMDAN 结合 LSTM 的混合时间序列数据预测方法
l 尤佳(Uzair), 基于深度学习的生成对抗网络方法的DLGAN架构
l 尤佳(Uzair), 用于高光谱图像分类的方法
l 尤佳(Uzair), U-V的特征增强融合用于脑肿瘤MRI图像分割的方法
l 尤佳(Uzair), 基于MSSARN框架的高光谱图像分类模型及分类方法
奖项与荣誉
l 五个图像处理优秀论文奖.
l Elsevier 列入全球前 2% 的科学家行列.
l IEEE Senior Member.
l Outstanding postdoctoral candidate from Nanjing Normal University at the School of Geography (Remote Sensing and GIS) of Nanjing Normal University.
l Talent Young Scientist Award (TYSP) from Pakistan Science Foundation (PSF) for post-doctoral.
专著发表:
· Uzair Aslam Bhatti, Deep Learning for Multimedia Processing Applications Volume One: Image Security and Intelligent Systems for Multimedia Processing Volume 1 https://www.routledge.com/Deep-Learning-for-Multimedia-Processing-Applications-Volume-Two-Signal-Processing-and-Pattern-Recognition/Bhatti-Mengxing-Li-Bazai-Aamir/p/book/9781032623344
· Uzair Aslam Bhatti, Deep Learning for Multimedia Processing Applications Volume Two: Signal Processing and Pattern Recognition Volume 2. https://www.routledge.com/Deep-Learning-for-Multimedia-Processing-Applications-Volume-One-Image-Security-and-Intelligent-Systems-for-Multimedia-Processing/Bhatti-Mengxing-Li-Bazai-Aamir/p/book/9781032548241
· Uzair Aslam Bhatti, Deep Learning for Earth Observation and Climate Monitoring Volume One:
https://www.amazon.com/Learning-Earth-Observation-Climate-Monitoring/dp/0443247129